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Linear Envelopes for
Uniform B-spline Curves

David Lutterkort and Jdrg Peters

Abstract. We derive an efficiently computable, tight bound on the
distance between a uniform spline and its B-Spline control polygon in
terms of the second differences of the control points. The bound yields
a piecewise linear envelope enclosing the spline and its control polygon.
For quadratic and cubic splines the envelope has minimal possible width
at the break points, and for all degrees the maximal width shrinks by a
factor of 4 under uniform refinement. We extend the construction to tight
envelopes for parametric curves.

§1. Motivation and Overview

The central feature that allows reasoning about nonlinear piecewise polynomi-
als is the fact that a spline is closely outlined by its B-spline control polygon.
The efficiency of many applications depends crucially on a good estimate of
the distance separating spline and control polygon. For rendering, a refined
control polygon is rendered instead of the curve itself. For curve-intersection

an efficient and robust technique is to recursively refine and intersect control
polygons [2]. Assessing the exactness of these operations requires a uniform,
linear bound on the distance of the curve and its (refined B-spline) control
polygon. The efficiency is improved if the effect of the refinement can be pre-
dicted rather than just measured. Of the two classical bounding contructs,
axis-aligned min-max coefficient boxes and the convex hull, the first yields
only a loose envelope and neither yields a priori estimates.

This paper introduces quantitative bounds that can be computed more
efficiently than convex hulls, and yield a simple piecewise linear envelope en-
closing spline and control polygon (see Figure 1) whose maximal width con-
tracts to 1/4th when the knot spacing is halved. The computation of the
envelope of a degree d spline consists of computing the second differences of
its control points and looking up or calculating d - 1 constants, the values
of a fixed set of splines. The sum of the constants, (d + 1)/24, provides a
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Fig. 1. A cubic curve (black) and its control points (black squares). The enve-
lope (grey) is constructed with the bound from Theorem 2.

second, even simpler, but generally much coarser bound (Figure 2). Both
bounds are piecewise linear with breaks at the corners of the control polygon
and are sharp for quadratic and cubic splines in the sense that at every corner
of the control polygon the distance between the spline and polygon is matched
exactly.

This paper derives these bounds for functions and establishes the conver-
gence of the bound under uniform refinement; the bounds are then applied to
curves to obtain localized envelopes.

§2. Notation

A scalar-valued piecewise polynomial p of degree d is a uniform B-spline if it
can be represented as

p= bkNk, bkC]R, Nk=N(.-k),
kE2Z

where N is the B-spline of degree d supported on the interval [0, d + 1) and
with the uniform knot sequence 2Z (c.f. [2]). For simplicity, we assume that
both the control point sequence and the knot sequence are biinfinite.

The control polygon f of p is the piecewise linear interpolant of the control
points bk at the Greville abscissae

kt' = k+(d +l)/2.

Over the interval [t*, t*+l], the control polygon is e(t) = Lk(t; bk k+1) where
we denote the line segment from (t*, a,) to (tk+la2) by

Lk(t;al, a2) = al(t*k+l -- t) +a2(t-- t'k).

The linear interpolant of a function f over this interval will be abbreviated
as Lk (f) = Lk(' ; f(t*), f(tk*+1 )). The (centered) second differences of b are
defined as

A2bt = b-1 - 2b + b'+'.

The first and the last basis function that are supported on [t•,t•+ 1] are N-

and Nk with
k = k+ 1- [d/2J, k= k- 1+ [d/2J.
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Fig. 2. A cubic curve (black) and its control points (black squares). On top
the envelope (grey) is constructed with the bound from Theorem 3, on
the bottom from the tighter bounds of Theorem 2.

§3. Uniform B-splines Bounds

The key observation for deriving the bounds is that the difference between a
uniform B-spline p and its control polygon can be factored into two parts: the
second differences of the control polygon and splines P3 ki, which are indepen-
dent of p.

Theorem 1. Over the interval [t*,t•+1 ], the difference between a uniform
B-spline p and its control polygon f is given by

p - f A~b'3ki, ki = Ej=-,,.(i - j)g i < k
IE-=i(j - i)Nj i > k.

The functions Oki are non-negative and convex on the interval [t*, t*+l] and

Oki(t*k) > 0 if and only if i E [k,k].
Proof: We write p - f over [t*,t•+1 ] as

b' aki = Eb' (N'(t) - Lk(t;hik, i,k+l)) ,
i=k_ i=k

where 6ik = 1 if i = k and 0 otherwise. We show that aki = A2fki: the
partition of unity -i N' = 1 implies that i aki -= 0 and the linear precision
of B-Splines, -i t*Nz(t) = t implies on the interval [t*, t*+1] that Ei iaki = 0.
Hence, for any i, Zj(j - i)akj = 0.

For i> k,

Oki = E( - i)Ng - E( - i)akj = E(i- .j)ak
j=i j=k j=k
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so that fOki = j=k(i - j)ckj for any i. It is now straightforward to verify
that A2fki aki and summation by parts yields

P - fk E 'ki E Sb A2/3ki = 5 A2 b' O~ki
i=k i=k i=k

The functions fOki are non-negative since their B-spline coefficients are non-
negative. The convexity of the f/ki over [t*, t*,+] follows from the convexity of

their B-spline control polygons: for i > k, the part of the control polygon of

fOki that influences fOki over [ti, tk+1] lies on the function max{. - t*, 0} while
for i < k it lies on max{t* - ., 0}. In both cases, the control polygon of O

3
ki,

and hence f/ki, is non-negative and convex. [1
Theorem 1 immediately gives us a piecewise linear envelope on p - f:

Theorem 2. Over the interval [t•,t•+ 1 ], the difference between a uniform
B-spline p and its control polygon e is bounded by

Lk (1: -bki) p (1- L,

where A+b? = max{A 2b, 0} and A-bi = min{A 2b, 0}.

Proof: We have from Theorem 1

p.= A2b?,Oki Z +bzI3ki+ZA-bipki-
i i

The positivity of the fOki implies that the first sum on the right-hand side is
positive and the second is negative and therefore

i A/bi3 5 -f< A~b'I3ki.

Since the fOki are convex over [t*, t*+1 ], they can be bounded linearly to yield
the bound of Theorem 2. []

An even simpler envelope can be derived by bounding the sum of the f/ki
at t* by the constant (d + 1)/24.

Theorem 3. Over the interval [t*,tk+i], the difference between a uniform
B-spline p and its control polygon e is bounded by

lP - fl : d24-- Lk(' IIA2bjI&, IIA2bIjk+1),

where IIA2bIjk = max{IA 2bi : i E [k,k]}. If d = 2 or d = 3 the relation holds
with equality at the tk*.

Proof: By Theorem 1 and the convexity of the Oki over [t*, t*+1 ], we have

P- -• < IA 2bI Oi i<(5 Lk IA 2 bi/3ki)

_< Lk(. ; A2bjjk Ifki(t*), IIA2bllk+l Y,1hi(t*+l)).
i i
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Fig. 3. A self-intersecting quartic curve (black) and its control points (black
squares). The envelopes (grey) are constructed with the bound from
Theorem 2. The envelope converges rapidly to the curve as the com-
parison of the original envelope, top, and the envelope after one step of
uniform refinement, bottom, shows.

The theorem follows if we can show that -'3i Oki _ (d + 1)/24:

T i T k -j

O fki E >j (i - j) akj 1: E (i - j) akj ak E i
i i-k_ jk j=k i=j j i=O

( ak ( akj-h(J k)Nj- :z.
3 3 3

Regardless of the degree of p, z is the quadratic polynomial

z(t) - *k + t 1+ t + - t + 
2 d - 2

Since z is a positive and convex function, z attains its maximum over [t*, t*+1 ]

at one of the endpoints of the interval. Its values there are

z(t*) = z(t*k+) = 24

and hence z(t) = O /3 ki •- (d + 1)/24 for all t E [t*, t*+].
The number of /

3ki that are nonzero at t* is d - 1 for d even and d - 2
for d odd, i.e. only fOkk is nonzero at tk if p is quadratic or cubic. But then all
inequalities of equation (1) become equalities as claimed. El

Computing the bounds

To compute the bounds for quadratics or cubics no B-spline evaluation is
required, since only Okk(tk*) = (d + 1)/24 is nonzero. For d > 3, it suffices to
look up tabulated values /Oki(t*) for - [d/2J < i < [d/2j. Forming the inner
products of Theorem 2 and Theorem 3 at t* is straightforward.
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§4. Uniform Refinement

An important operation on B-splines is the refinement of the knot sequence
or knot insertion. Knot insertion changes the representation of the piecewise
polynomial p over the original knot sequence to one over a larger knot sequence
and reduces the distance between spline and control polygon (c.f. Figure 3).

After halving the distance between knots the new control points bk in
p(t) = Ek bkNk (t) = -k bkNk(2t) are given by

Fd/21 d2+ + [d/2 d1 \
2i= 2-d E biJ 2i+1 = 2(-dd) b'. (2)

j=0 2 E (2j+1l

Theorem 4. The second differences A 2 6i of the relined control polygon are
bounded by the second differences A 2b/ of the original control polygon

max iJAYJ = -mxJA 1max A~7 ~max IA2buI.

Proof: The second derivative p" of p is given by

p"(t) = EA 2 bk-lN 2 (t) = EA 2 bk-N 2k(2t),
k k

which means that the A 2bi can be obtained from the A 2b' via (2) as

2 d A2 b2i d -. ( 11A 2b-', 2dA 2 b
2
i+l = E. (d- 1)A 2b:i-

(2j -2 3 2

The proof follows from -j (d) -= 2d-1 and 2i (2j 1 -) 2 Z, (%) -

Theorem 4 yields the following a priori estimate on the number of subdi-
visions a needed to bring spline and control polygon within a given distance e:

a(p,A) = flog 4 (d + 1)l2A4 bl.
24E

Examples: For quadratic B-Splines, uniform refinement is called Chaikin's
algorithm, and

b2i = 2-2(3b'- 1 + bi), b2i+1 = 2-2(b'- 1 + 3b').

This yields
Ab 2  A22i-1 = A2b-1,

4
i.e. every second difference is guaranteed to decrease by a factor of four. Sim-
ilarly, for cubic B-Splines we have

b2i = 2- 3 (bi- 2 + 6bi-' + b'), b2i+1 = 2-3(4b'- 1 + 4bi),

and
A 12i -1 A2i+1 1 A2b'-' + A2 b'

4 Ab A 2
44 2
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bsk+l1

kSk

u1

Fig. 4. Constructing the envelope of a curve from the bounding rectangles Sk
and Sk+l: only the outer line segments Ulk and uk are part of the convex
hull of Sk U Sk+1 and the envelope.

§5. Curve Envelopes

A parametric curve p is in uniform B-spline form if p = -j V Nj where the

bj E R' are the control points of p and the uniform B-spline basis Nj is
defined as in Section 2. The curve p is closed if the control point sequence
(V9) is periodic.

The functional bounds are applied componentwise to parametric curves.
Then each control point and the curve point corresponding to its Greville
abscissa lie in a box whose width in the ith component is the bound in the
ith component. It is now convenient to restate the bounds from Theorems 2
and 3 more abstractly as

f (t) < p(t) - f(t) < j(t) for t E [tk,t k+]. (3)

For curves p, the bound in the i-th component is denoted by fi :_ pi - fi < -_i.
By (3), p(t*) is located in the axis-aligned box Sk,

Sk = {x I __(t*) _< xi -bý _<•j(t*) for alli = 1,...,n}.

Each point of the curve segment p(t), t E [t*,t•+1 ], lies in a box S(t),
that by the linearity of e and i is a convex combination of Sk and Sk+1:

S(t) = Lk(t;Sk, Sk+1).

The curve segment is therefore contained in the union of all S(t), t E [t•, tk+1],
which is the convex hull Hk of the corners of Sk and Sk+1. To be specific, we
discuss the case of planar curves.

Enveloping planar curves

Let vý, i = 1, ... , 4, be the line segments connecting corresponding corners of
Sk and Sk+l; that means v, connects the lower left corner of Sk to the lower
left corner of Sk+1, vk connects the lower right corner of Sk to the lower right
corner of Sk+1 etc. as in Figure 4.

Hk consists of parts of the boundaries of Sk and Sk+1 and exactly two
additional line segments Ul and uk chosen from the vý. Since Uk and uk are
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part of the convex hull Hk, they do not intersect the interiors of Sk and Sk+l.
We do not need to actually compute intersections of the vi and Sk, Sk+ to
select 24 and uk: since Sk and Sk+l are axis-aligned it suffices to look at the
signs of the slopes of the vi. The ui are separated by the line from bk to

we call the one lying to the left of this line ul and the one lying to the
right of this line u2.

The sets Ui = {uk} are not yet polylines: consecutive line segments uk
and uý+l may intersect or not touch at all. But note that the line extending2 k-1 W banaprprplln
u' always intersects the one extending u We obtain a proper polyline
Wi with exactly one line segment for each control point of p by taking this
intersection as starting point and the intersection with the line through u<
as the end point of Wi. The polylines W1 and W2 then form a local envelope
of p: the curve-piece p([tk,+t1+]) lies in the quadrangle spanned by the k-th
pieces of W1 and W2 .
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